翻訳と辞書
Words near each other
・ Information technology operations
・ Information technology outsourcing
・ Information Overload Unit
・ Information paradox
・ Information Please
・ Information policy
・ Information pollution
・ Information Presentation Facility
・ Information privacy
・ Information privacy law
・ Information Processes and Technology
・ Information processing
・ Information processing (disambiguation)
・ Information Processing and Management
・ Information Processing Centre
Information Processing Language
・ Information Processing Letters
・ Information Processing Society of Japan
・ Information Processing Techniques Office
・ Information processing technology and aging
・ Information processing theory
・ Information processor
・ Information professional
・ Information projection
・ Information protection policy
・ Information published by WikiLeaks
・ Information quality
・ Information Quality Level
・ Information Quality Management
・ Information Radio


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Information Processing Language : ウィキペディア英語版
Information Processing Language

Information Processing Language (IPL) is a programming language created by Allen Newell, Cliff Shaw, and Herbert A. Simon at RAND Corporation and the Carnegie Institute of Technology at about 1956. Newell had the job of language specifier-application programmer, Shaw was the system programmer, and Simon took the job of application programmer-user.
The language includes features intended to help with programs that perform simple problem solving actions such as lists, dynamic memory allocation, data types, recursion, functions as arguments, generators, and cooperative multitasking. IPL invented the concept of list processing, albeit in an assembly-language style.
==A taste of IPL==

An IPL computer has:
# a set of ''symbols''. All symbols are addresses, and name cells. Unlike symbols in later languages, symbols consist of a character followed by a number, and are written H1, A29, 9-7, 9-100.
## Cell names beginning with a letter are ''regional'', and are absolute addresses.
## Cell names beginning with "9-" are ''local'', and are meaningful within the context of a single list. One list's 9-1 is independent of another list's 9-1.
## Other symbols (e.g., pure numbers) are ''internal''.
# a set of ''cells''. Lists are built from several cells holding mutual references. Cells have several fields:
## P, a 3-bit field used for an operation code when the cell is used as an instruction, and unused when the cell is data.
## Q, a 3-valued field used for indirect reference when the cell is used as an instruction, and unused when the cell is data.
## SYMB, a symbol used as the value in the cell.
# a set of ''primitive processes'', which would be termed ''primitive functions'' in modern languages.
The data structure of IPL is the list, but lists are more intricate structures than in many languages. A list consists of a singly linked sequence of symbols, as might be expected -- plus some ''description lists'', which are subsidiary singly linked lists interpreted as alternating attribute names and values. IPL provides primitives to access and mutate attribute value by name. The description lists are given local names (of the form 9-1). So, a list called L1 holding the symbols S4 and S5, and described by associating value V1 to attribute A1 and V2 to A2, would be stored as follows. 0 indicates the end of a list; the cell names 100, 101, etc. are automatically generated internal symbols whose values are irrelevant. These cells can be scattered throughout memory; only L1, which uses a regional name that must be globally known, needs to reside in a specific place.


IPL is an assembly language for manipulating lists. It has a few cells which are used as special-purpose registers. H1, for example, is the program counter. The SYMB field of H1 is the name of the current instruction. However, H1 is interpreted as a list; the LINK of H1 is, in modern terms, a pointer to the head of the call stack. For example, subroutine calls push the SYMB of H1 onto this stack.
H2 is the free-list. Procedures which need to allocate memory grab cells off of H2; procedures which are finished with memory put it on H2. On entry to a function, the list of parameters is given in H0; on exit, the results should be returned in H0. Many procedures return a boolean result indicating success or failure, which is put in H5. Ten cells, W0-W9, are reserved for public working storage. Procedures are "morally bound" (to quote the CACM article) to save and restore the values of these cells.
There are eight instructions, based on the values of P: subroutine call, push/pop S to H0; push/pop the symbol in S to the list attached to S; copy value to S; conditional branch. In these instructions, S is the target. S is either the value of the SYMB field if Q=0, the symbol in the cell named by SYMB if Q=1, or the symbol in the cell named by the symbol in the cell named by SYMB if Q=2. In all cases but conditional branch, the LINK field of the cell tells which instruction to execute next.
IPL has a library of some 150 basic operations. These include such operations as:
* Test symbols for equality
* Find, set, or erase an attribute of a list
* locate the next symbol in a list; insert a symbol in a list; erase or copy an entire list.
* Arithmetic operations (on symbol names).
* Manipulation of symbols; e.g., test if a symbol denotes an integer, or make a symbol local.
* I/O operations
* "generators", which correspond to iterators and filters in functional programming. For example, a generator may accept a list of numbers and produce the list of their squares. Generators could accept suitably designed functions – strictly, the addresses of code of suitably designed functions – as arguments.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Information Processing Language」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.